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Figure 10: Real-time bidder value distribution estimates for Publisher A ad types 
1-3 with beta distribution parameters (θ1, θ2) and rescaling parameter θ3 given by 
#1 = (8, 0.01, 6), #2 = (0.01, 0.1, 4), and  #3 = (6, 0.1, 5.9). 
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Appendix 

A Proofs  

Proposition 1 

Proof. See Proposition 2.1 in Krishna (2009). 

Proposition 2 

Proof. Part 1 holds because a first-price bidder i chooses the bid b, given  his  valuation  

x to solve 

max (x− b) Pr [i wins|b]
b≤x 

Thus, bidding above (below) her valuation ensures a negative (positive) expected 

payoff. For Part 2, we wish to show that i’s bids in an internal (bL, B] are strictly 

dominated for some bL when it faces competition from a bidder who bids B > r  

with positive probability (α = Pr [B] > 0). We consider the case where α < 1, 
since that case is isomorphic to setting the reserve price at B. Write  Pr [i wins|b] =  

H (b) (1− α)I[B>b] α 
2 

I[B=b] where H (b) denotes the distribution of competing first-price 

bidders (equals 1 if none exist). 
Suppose that i’s valuation satisfies x > B. Then we choose bL = B − ε where 

ε must first satisfy x − B > ε >  0. Then, compare the payoffs for bid B + ε and 

bL = B + ε. bL is dominated 

u (bL) x− (B − ε) H (B − ε) (1− α)
= < 1 

u (B + ε) x− (B + ε) H (B + ε) 

H(B−ε)(1−α) x−(B−ε)for some ε since < 1 and limε→0 = 1. Moreover, this inequality H(B+ε) x−(B+ε) 

holds for any b ∈ [bL, B] provided that ε satisfies 

u (bL) x− (B − ε) H (B) α 

< 2 < 1 
u (B + ε) x− (B + ε) H (B + ε) 

Now, suppose that i’s valuation satisfies x ≤ B. If  x < B−ε = bL then any bid b ∈ 

[bL, B] is obviously strictly dominated by some b� < bL provided that Pr [i wins|b] > 0. 
Now suppose that B − ε ≤ x ≤ B. We  must  also  choose  ε such that b ∈ [B − ε, B] is 
strictly dominated for some b� < bL. Such  an  ε must exist or else b = β∗ (x) =  x for 
some x, which we know is not optimal so long as Pr [i wins|b�] > 0 for b� < bL. 
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Proposition 3 

Proof. In an equilibrium, the second-price bidders bid their valuations due to Propo­
sition 1, but submit their bids randomly due to Assumption 2. 

Theorem 2.1 from Athey and Haile (2007) delivers a unique equilibrium in pure 

strategies with a strictly increasing differentiable bid function β (x) in a independent 
private value auction with symmetric first-price bidders under the regularity condi­
tions on the value distribution F (·). Below, we show that the same theorem yields an 

equilibrium here because the problem is unchanged but for the discontinuity described 

in Proposition 2. 
The first-price bidder i chooses the bid b, given his  valuation  x, to  solve  

max (x− b) Pr [i wins|b]
b≤x 

Suppose the equilibrium bid function β (x) is strictly increasing, so that we can define 

the inverse bid function η (b) =  β−1 (b). Suppose  that  the  first-price  bidders  face  

m = 1  second-price bidders with B > r and Pr [B] = α > 0 (Pr [0] = 1 − α). Then 

we can rewrite the maximization problem as 

I[b=B]αn−1 I[b<B]max (x− b) F (η (b)) (1− α)
b≤x 2 

Note that the objective function for b > B is the same as the problem with first-price 

bidders alone π (b, x) = (x− b) F (η (b))n−1 . For  b < B, the  optimization  problem  is  

the same because the objective function is scaled by the constant (1− α). 
By taking first order conditions, we can see that optimal bid function is the solu­

tion to the ordinary differential equation 

f (x) f (x)
β� (x) + (n− 1) β (x) = (n− 1) x 

F (x) F (x) 

Solving this, we have the optimal bidding function 

´ x n−1F (u) du− c 
β (x; c) = x− (A.1) 

F (x)n−1 

The initial condition satisfies β (r; c) = r, so  c = 0. See  Paarsch  and  Hong  (2006)  for  

a detailed proof.  

From Proposition 2, we know the solution will satisfy β∗ (x) =  β (x; c = 0)  until 
some threshold x� such that β∗ (x) > B  for x > x� . 13 Proposition 2 tells us we also 

�13No such x exists if B is sufficiently large so as to not affect the real-time bidders behaviour. 
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show in a simple example that multiple equilibria can exist with multiple offline bids. 
Second, I define my selection algorithm that chooses a unique bid function. 

We can also conceive of alternate equilibria of the form in Chapter 8 of Krishna 

(2009) in which the second-price bidders do not bid their valuation. However, in the 

data, we the observed first-price bids are typically distributed with positive probability 

on their entire support. This rules out equilibria where the second-price bidders do 

not bid their valuations—at least on the support of first-price bids. 

B.1 Multiple Equilibria Example 

Suppose that two uniform first-price bidders face competition of the form B = 

(0.25, 0.3) and α = Pr [B] = (0.1, 0.15). This has a symmetric equilibrium with 

two gaps given by the bid function 


 

x if x ≤ 5 
2 11 

β ∗ (x) = x 
2 + 5 if 1

3 < x ≤ 0.4906484x 

x 
2 

 + 0.0268x if x > 0.4906
 

with the gaps ( 5 , 0.25] and (0.2664, 0.3]. It also has a symmetric equilibrium with a22 

single gap given by the bid function 

β ∗ (x) =  


 


 

x if x ≤ 120 
2472 

x + 0.0278x if x > 120 
2472 

with the gap ( 60 , 0.3] where 60 = 0.2430. All decimals are approximations shown to247 247 

four digits. Note that the algorithm described above selects the second of these two 

equilibria. 

B.2 Equilibrium Selection Algorithm 

I define my equilibrium bid function selection mechanism below. The conditions of 
Proposition 3 are assumed to hold including the presence of n >  1 symmetric real-
time (first-price) bidders. The distribution of their bids is denoted by G (·) . Denote 

the vector of positive offline bids by the ordered B = [B1 . . . Bm] with associated
 

probability vector α = [α1 . . . αm]. Denote  the  jth bid gap (the dominated bid in­
tervals) by (b
Lj , Bj ] with corresponding indifference valuation x� . Multiple equilibria
j

are possible because bid gaps for consecutive offline bids may overlap. My algorithm 

selects a single equilibrium by moving sequentially through B and choosing for each 
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